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Environmental DNA (eDNA) can be used to identify macroorganisms and describe
biodiversity, and thus has promise to supplement biological monitoring in marine
ecosystems. Despite this promise, scaling sample acquisition to the spatial and temporal
scales needed for effective monitoring would require prohibitively large investments in
time and human resources. To address this challenge, we evaluated the efficacy of
an autonomous eDNA sampling system and compare results obtained to traditional
eDNA sampling methods. The autonomous sampling instrument consisted of the
Environmental Sample Processor (ESP) coupled to an autonomous underwater vehicle
(AUV). We tested equivalency between the ESP and traditional eDNA sampling
techniques by comparing the quantification of eDNA across a broad range of taxa,
from microbes (SAR11), phytoplankton (Pseudo-nitzschia spp.), and invertebrates
(krill: Euphausia pacifica) to vertebrates (anchovy: Engraulis mordax). No significant
differences in eDNA densities were observed between the two sample collection and
filtration methods. eDNA filters collected by the ESP were preserved and stable for
21 days, the typical deployment length of the instrumentation. Finally, we demonstrated
the unique capabilities of an autonomous, mobile ESP during a deployment near
Monterey Bay, CA, by remotely and repeatedly sampling a water mass over 12 h.
The development of a mobile ESP demonstrates the promise of utilizing eDNA
measurements to observe complex biological processes in the ocean absent a
human presence.

Keywords: environmental DNA, eDNA, ecogenomic sensor, biosensors, AUV

INTRODUCTION

Management and conservation efforts aimed at protecting marine organisms and ecosystem
function require observing species assemblages over long periods of time and over large areas
(Pereira et al., 2013; Miloslavich et al., 2018; Muller-Karger et al., 2018). Traditional monitoring
approaches are often reliant on ships, human observers, and combinations of direct sampling
(water, nets, fishing) and tagging of individual animals. These methods require trained individuals
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and can be destructive (Jones, 1992; Hopkins and Freckleton,
2002; Wheeler et al., 2004). An intriguing approach for reducing
the costs and impacts of traditional biomonitoring surveillance
is through the collection and analysis of environmental DNA
(eDNA; Ficetola et al., 2008; Thomsen et al., 2012; Bohmann
et al., 2014; Goldberg et al., 2015; Thomsen and Willerslev, 2015;
Hoffmann et al., 2016; Evans et al., 2017). Here, we explored the
use of an autonomous sampling system fitted to an autonomous
underwater vehicle (AUV) to determine if eDNA collections can
be enhanced beyond what is currently possible using traditional
marine eDNA sample collection and processing methods alone.

Environmental DNA comprises all sources of DNA (eukaryal,
bacterial, archaeal, and viral) that can be recovered from a
native sample (e.g., seawater, freshwater, sediments, soils, and
air; Thomsen and Willerslev, 2015; Deiner et al., 2017; Taberlet
et al., 2018). Biological monitoring utilizing eDNA in aquatic
environments have applied both active (targeted) and passive
surveillance techniques (Simmons et al., 2015). In marine
systems, active surveillance has been utilized for monitoring
invasive species or rare organisms of conservation concern with
quantitative or digital PCR, such as white sharks (Lafferty et al.,
2018), killer whales (Baker et al., 2018), and seastars (Uthicke
et al., 2018). Compared to freshwater environments, passive
metabarcoding investigations in marine systems are limited
(Jerde et al., 2019). Marine eDNA metabarcoding studies have
been shown to yield similar species composition assessments
compared to conventional (i.e., non-DNA based) surveys, and
often provide a higher resolution of biodiversity (Thomsen et al.,
2012; Port et al., 2016; Valentini et al., 2016; Kelly et al., 2017;
Yamamoto et al., 2017; Taberlet et al., 2018). While eDNA studies
are becoming more common in marine systems, most efforts
have focused on either the analytical methods (filtration and assay
development) to generate an eDNA signal, or the interpretation
of that signal (bioinformatics and eDNA fate and transport).
A critical, often overlooked step in this process is the means
by which samples are acquired and options for scaling up such
collections both temporally and spatially. For example, most
eDNA analytical procedures require a human presence to collect
and process samples, which inherently limits where and how
frequently collections can be made – especially when sampling
sites cannot be accessed easily.

Engineering advancements have led to the development of
robotic water samplers that overcome the temporal and spatial
limitations of traditional manual sampling. Bowers et al. (2018);
Govindarajan et al. (2015), Herfort et al. (2016); Robidart
et al. (2014), Ryan et al. (2011), and Taylor et al. (2015) have
utilized automated systems for the study of marine microbes,
phytoplankton, zooplankton and invertebrate larvae. This study
concentrates on use of the Environmental Sample Processor
(ESP), a robotic device that can be programmed to automate
water sample filtration and preservation of the captured material,
or homogenize it for immediate analyses in situ (Scholin et al.,
2017). Various iterations of the instrument have been realized
over the past 25 years. The second-generation (2G) ESP enables
the in situ detection/quantification of marine organisms using
sandwich hybridization (SHA; Preston et al., 2009; Bowers et al.,
2018), competitive ELISA (cELISA; Doucette et al., 2009), and

qPCR assay formats (Preston et al., 2011; Ussler et al., 2013;
Yamahara et al., 2015). The diverse processing capabilities of the
2G-ESP are counterbalanced by inherent challenges posed by
a rather large and cumbersome instrument that primarily has
been used aboard dedicated moorings and drifters, as well as
installations on ships and shore-based stations (Scholin et al.,
2017). Recently, a third-generation (3G) ESP was specifically
designed to fit on a Tethys-class long-range AUV (LRAUV;
Hobson et al., 2012; Pargett et al., 2015; Scholin et al., 2017).
The LRAUV-3G ESP combination makes it possible to collect and
process up to 60 samples in a similar fashion as the 2G instrument
while roaming freely in the ocean from the surface to 300 m depth
over many days during a single deployment.

While the LRAUV-3G ESP (hereafter LRAUV-ESP)
development offers the promise of new eDNA collection
capabilities, the equivalency of acquiring/preserving samples
robotically versus manually using current “gold standard”
methods must first be established. In this study we addressed
this need by (1) comparing gene abundances of target organisms
collected robotically and traditionally from both experimental
and native samples, and (2) evaluating the stability of preserved
eDNA samples collected by the 3G ESP since there is a
lag between in situ sample collections and their return to
a laboratory. qPCR was utilized in this study to provide a
quantitative measurement for making comparison between
methods. Finally, we demonstrated the unique autonomous
capabilities of the LRAUV-ESP during a deployment near
Monterey Bay, CA, by remotely and repeatedly sampling a
moving water mass over 12 h. The high-resolution sampling
scheme afforded by the LRAUV-ESP offered the opportunity
to observe dynamic eDNA signatures that might otherwise be
difficult if not practically impossible to observe using manual
collections alone.

MATERIALS AND METHODS

Experimental Design
The 3G ESP was used to fully automate sample filtration
and preservation, and compared against traditional laboratory
methods that rely on peristaltic pump filtration followed by flash
freezing (i.e., “traditional” or “manual” methods). The 3G ESP
can run standalone on a benchtop in the laboratory (hereafter
referred to as benchtop-ESP), or mounted on an LRAUV for field
deployment (hereafter referred to as LRAUV-ESP).

In the first phase of comparisons, a series of samples were
processed in parallel using the benchtop-ESP and manual
methods; these are referred to as direct comparisons since
each trial draws from a common water source (Figure 1).
Direct comparisons were also used to determine the stability
of recoverable eDNA acquired using the ESP in a time
series experiment reflective of the typical duration of an
LRAUV deployment.

Secondarily, the LRAUV-ESP was deployed at sea. While the
ESP was acquiring its sample in situ, Niskin bottles were lowered
from a ship to collect water in proximity to the vehicle. The latter
are referred to as indirect comparisons since the ESP and manual
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FIGURE 1 | Process diagrams of the direct (left) and indirect (right) comparison experiments. Direct comparison drew samples from the same source (green). Indirect
comparisons utilized two different water sources: hand collections (green) and LRAUV-ESP collections (dark green). Traditional sample processing of peristaltic
filtration followed by liquid nitrogen (LN2) freezing is shown in blue. 3G-ESP sample processing with RNAlater R© is shown in red. DNA extractions and qPCR assays
performed were the same across all methods.

collections do not draw precisely from the same source, and since
the ESP required approximately 1 h to filter 1 L whereas the
Niskin bottles capture a large volume instantly when tripped and
were later processed manually (Figure 1).

Finally, the LRAUV-ESP was deployed and autonomously
collected samples in Monterey Bay over a 12-h period. This test
demonstrated the emerging autonomous, mobile, and targeted
sample collection capabilities that the LRAUV-ESP affords.

Sample Collection
Water samples were collected from Monterey Bay Aquarium
exhibits and Monterey Bay (environmental) sites six times as
follows: (1) 20 L was acquired from the Monterey Bay Aquarium
Kelp Forest tank (MBAKF) in January 2017, (2) eight 10 L Niskin
samples were taken from Monterey Bay aboard the R/V Western
Flyer in May 2017, (3) four LRAUV-ESP samples were collected
in proximity with the R/V Western Flyer Niskin samples in
May 2017, (4) 20 L was gathered from Monterey Bay (36.797N,
−121.847W) aboard the R/V Rachel Carson in January 2018
using Niskin bottles, (5) eleven 1 L samples collected using the
LRAUV/ESP demonstration experiment, and (6) a 20 L hand
sample from the MBAKF in February 2018. A summary table of
all samples is shown in Supplementary Table S1.

Direct Comparisons
We performed direct comparisons between the benchtop-ESP
and manual laboratory methods (n = 15) on samples collected at

the MBAKF exhibit (n = 2) and Niskin samples (n = 13) collected
using a CTD-Niskin (10 L) rosette sampler (CTDn) aboard the
R/V Rachel Carson and R/V Western Flyer. All MBAKF and
CTDn samples were collected in acid washed (10% hydrochloric
acid) and autoclaved polypropylene carboys. All carboys were
triple rinsed with a small volume of sample water prior to
sample collection. For MBAKF samples, 20 L hand-grab samples
were collected from the surface (<1 m depth) of the exhibit
and immediately transported to the lab on ice. The samples
were continuously mixed with an acid washed magnetic stir bar,
and samples were processed in triplicate using the appropriate
method. CTDn samples were composited from 2 L of water
from Niskins sampled at surface, 10, 20, 30, 40 m depths, for a
total volume of 10 L. The composite 10 L sample was vigorously
shaken by hand, split into 2 × 5 L subsamples and immediately
processed in triplicate.

Indirect Comparisons
We performed indirect sample comparisons by comparing CTDn
samples to in situ collected and processed samples on LRAUV-
ESP (n = 4). The ESP continuously filtered water while the
LRAUV spiraled between 10 and 40 m depths (at 1 m/s speed
and spiral radius of 10 m). CTDn samples were collected aboard
the R/V Western Flyer, within close proximity (∼100 m) of the
LRAUV-ESP. To match the LRAUV-ESP spiral diving samples,
CTDn samples were composited from 2 L of Niskin water
samples at depths of surface, 10, 20, 30, 40 m; for a total volume
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of 10 L. The composite 10 L sample was vigorously shaken by
hand, split into 2 × 5 L subsamples and immediately processed
in triplicate on the vessel. The 5 L subsamples were processed
using both the traditional and bench-top ESP methods for a
direct comparison.

Details of the ESP sample collection and processing are
described below.

DNA Stability Experiment
We determined the stability of ESP RNAlater R© preserved samples
by comparing gene abundance from DNA extracted from the ESP
and manually filtered/flash frozen samples that were held over
time. A single 20-L sample was collected from the MBAKF exhibit
in February 2018. The sample was processed and preserved
using the ESP with RNAlater R© and traditional filtration and
flash freezing at the initial sampling time point (T0). At T0,
a single water sample was filtered using the ESP (n = 9) and
traditional method (n = 6). At T0, three of the ESP samples
and six of the traditional filter samples were recovered and
stored at −80◦C until DNA extraction. To simulate conditions
during an ESP deployment, the remaining six ESP samples
were stored in a sealed chamber purged with ultra-pure zero-
grade nitrogen gas (Praxair, Danbury, CT) at room temperature;
three were recovered at 7 days (T7) and three at 21 days
(T21). Upon recovery, all ESP filters were stored at −80◦C until
DNA extraction. Details of the traditional and ESP methods are
described below.

ESP Demonstration Deployment
In January 2018, the LRAUV-ESP was deployed for 6 days
outside Monterey Bay with 60 cartridges for sample collection
and preservation (see methods below). In total, 45 of the 60
cartridges were utilized to collect and preserve environmental
water samples and 15 cartridges were utilized for processing
controls (positive and negative controls). Of the 45 cartridges,
11 cartridges were dedicated to sampling at the chlorophyll
maximum layer by programming the LRAUV to autonomously
find a local high-chlorophyll patch, and then trigger the ESP
to collect samples repeatedly within that feature (i.e., back-to-
back) for 12 h. In the peak-chlorophyll layer, the LRAUV ran
in tight circles (10 m radius) at 1 m/s speed while sampling.
After every three samples (about 3 h), the LRAUV profiled the
water column and reacquired the chlorophyll peak for the next
series of sample collections. Details of the LRAUV chlorophyll
peak detection and sampling algorithms have been presented
previously (Zhang et al., 2015).

Traditional Sample Processing
The traditional (= manual) laboratory sample handling
method utilized a peristaltic pump (after Walsh et al.,
2009; Aylward et al., 2015). Briefly, 1 L water samples were
pushed through in-line Swinnex R© (MilliporeSigma, Darmstadt,
Germany) housings containing 25 mm diameter, 0.22 µm
Durapore filters (MilliporeSigma, Darmstadt, Germany). Filters
were immediately removed from the Swinnex R© filtration
housings using aseptic techniques, rolled into 2.0 mL cryovials
containing 250 uL of 0.5 and 0.1 mm Zirconium beads (Biospec

Products, Inc., Bartlesville, OK), and then stored at −80◦C
until DNA extraction.

ESP Sample Processing
The mechanical design and function of the 3G ESP has been
previously described (Pargett et al., 2015) and will only be
summarized here (Figure 2). The 3G-ESP utilizes reusable
cartridges, with each cartridge carrying all filters and reagents
necessary for a single sampling event. The instrument holds
60 cartridges mounted on a custom-designed toroid valve that
can individually select the cartridge designated for filtration.
In the LRAUV-ESP configuration, all components (sampling
pump, cartridges, actuators, and all electronics) are arranged in
a 30 cm × 60 cm cylinder to allow for mounting at the front of
the LRAUV. ESP cartridge parts that come in contact with sample
water are cleaned with 10% bleach, 10% hydrochloric acid and/or
UV irradiation (depending on component and disinfectant
compatibility) for nucleic acid and nuclease decontamination
prior to assembly. For eDNA sampling, assembled cartridges
contained a 25 mm diameter, 0.22 µm Duropore filter for
particulate sample collection and 1.6 ml of 0.1 um filtered
RNAlater R© (Life Technologies, Grand Island, NY) for sample
preservation (Figure 2). The cartridge side and sampling sides
of the toroid valve were cleaned with 10% bleach for 1 h followed
by rinsing with 500 ml of MillQ water (Figure 2). Cartridges were
loaded onto the instrument and the sampling chambers holding
the filters were placed under vacuum (20–29 in Hg).

A schematic and process diagram of the ESP sampling is
shown in Figure 2. Prior to deployment, the LRAUV-ESP
housing is flushed with ultra-pure zero-grade nitrogen gas
(Praxair, Danbury, CT) to create a non-reactive environment.
The sampling system is sterilized by pumping 100 mL of
10% bleach followed by 200 mL of MilliQ water through the
intake/exhaust system. The bleach and MilliQ volumes are
equivalent to 6 and 12 volumes of the intake-exhaust loop
(Figure 2). When a sampling event is initiated, the ESP sample
pump pushes 110 mL of water through the intake-exhaust loop to
flush residual water out of the system. After flushing, a cartridge
is selected from the toroid valve and water is diverted through
a cartridge for filtration. Target (desired) sample volumes were
predetermined by the user (in this case, 1 L), and the ESP
continuously monitors pressure across the filter to monitor for
leaks and particulate loading of the filters. Filtration parameters
for this experiment allow for a sample pressure head between 18
and 26 PSI, a minimum flow rate of 0.2 ml/s, and a maximum
allowable filtration time of 1 h 15 min. Sample collection is
terminated either after the target volume is reached, the filter
shows signs of particle loading (flow rates < 0.2 ml/s), or
the maximum allowable filtration time is reached. When any
of those conditions is met, cartridge syringe actuators deliver
1.6 ml RNAlater R© into the 0.9 ml filter chamber, displacing the
residual seawater and excess preservative to the cartridge’s waste
chamber. The preservative left in contact with the sample filter
(>90% of the concentration of full strength RNAlater R©) remains
for 10 min to saturate/incubate the particulates captured on
the filter (this time can be varied per user preference). After
soaking, the RNAlater is expelled from the filter chamber to
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FIGURE 2 | Process flow diagram, schematic representation and photographs of the 3G-ESP. Schematic representation of the 3G-ESP (A), main components of the
3G-ESP are shown: sampling loop with pump (red) and bulkhead valves (black), toroid valve (orange), and sampling cartridge. The sampling cartridge (within dashed
lines) contains the filter housing, fluidic manifold (blue) for RNAlater R© delivery (purple), nitrogen purging (gray), and waste recovery (green). All components within the
3G-ESP bulkhead valves (within the dotted lines) are stored under a nitrogen environment (gray). Sample processing flow diagram describes a simplified version of
the sample processing on the 3G-ESP (B). The 3G-ESP houses 60 cartridges arranged around a toroid valve, resulting in an instrument approx. 30 cm × 60 cm (C).
3G-ESP sample collection and processing cartridge (D). The design of 3G-ESP allows mounting as a payload on a long-range autonomous underwater vehicle (E).
All individuals shown in these photographs were informed prior to submission and have given written permission for the photographs to be used in this publication.

waste chambers with nitrogen gas (LRAUV-ESP) or ambient
air (benchtop-ESP); the processed filter remains moist but is
not flooded. For a deployed LRAUV-ESP, cartridges remained

in a nitrogen environment until the instrument was returned
to the lab. Once returned to the lab, the filters were aseptically
removed from the cartridges and rolled into 2.0 mL cryovials
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containing 250 µL of 0.5 and 0.1 mm Zirconium beads (Biospec
Products, Inc., Bartlesville, OK), and immediately stored at
−80◦C until DNA extraction.

DNA Extractions
In order to prevent sample contamination, we adhered to
stringent quality control and quality assurance practices.
For example, sample collection and DNA extraction were
performed in separate purpose-designated laboratories following
recommendations in Goldberg et al. (2016). Total DNA was
extracted from filters using a modified DNeasy (Qiagen, Valencia,
CA) protocol (Thomsen et al., 2012; Djurhuus et al., 2017). DNA
was eluted in two 50 µL fractions, for a total of 100 µL with PCR
grade water. The DNA extracts were aliquoted into five 20 µL
volumes and stored at −80◦C until used in qPCR analyses.

qPCR Assays
PCR preparation was performed in a designated DNA-free
PCR hood (UVP, Upland, CA), and subsequent amplification
reactions were performed in a separate room. eDNA from
Northern Anchovy (Engraulis mordax), Pseudo-nitzschia spp.,
and Pelagibacterales (SAR11) were quantified using previously
described qPCR assays (Table 1). An assay for the quantification
of eDNA from North Pacific Krill (Euphausia pacifica) was
developed for this study (see Supplementary Materials).
Reactions consisted of 1X TaqmanTM Environmental Mastermix
2.0 (Life Technologies, Grand Island, NY), forward and reverse
primers and probe (Table 1), and 2 µL of template DNA
in a 20 µL final volume. Triplicate reactions were run on a
StepOnePlus real-time PCR system (Applied Biosystems, Foster
City, CA) under the following thermal cycling conditions: 2 min
at 50◦C and 10 min at 95◦C, followed by 40 cycles of 15 s at 95◦C
and 1 min at the corresponding annealing temperatures shown
in Table 1. Fluorescence thresholds for each assay were manually
adjusted to compare standard curves across runs. Slopes, y

intercepts, reaction efficiencies and manual cycle thresholds
(CTs) are presented in Table 1.

Integrated DNA Technologies gBlocks R© Gene Fragments were
utilized as DNA standards in the generation of qPCR standards
curves (see Supplementary Materials). The synthesized DNA
standards were diluted to 10 ng/µL stock solutions in Tris-EDTA
(TE buffer) pH 8.0 (Sigma-Aldrich, St. Louis, MO) and verified
using a NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE). The stock solutions were diluted
to 1 × 108 copies/µL in ultrapure PCR water (Sigma-Aldrich,
St. Louis, MO) based on sequence composition. qPCR standards
were generated by serial dilutions from 100 to 106 copies/µL.
Triplicate qPCR standard curves were run on each qPCR plate
and each standard curve was compiled into a master standard
curve for sample quantification.

Sample DNA extracts were diluted at fivefold (1:5) and 10-
fold (1:10), to assess qPCR inhibition. Samples were considered
inhibited if the sample dilution CTs deviated from expected
values, which were 2.32 cycles for fivefold (1:5) and 3.32 cycles
for 10-fold (1:10) dilutions.

Negative Controls
Filtration blanks utilizing 500 mL of PCR grade water (Sigma-
Aldrich, St. Louis, MO) were performed alongside each peristaltic
water filtration event (n = 14). Prior to and after deployment
or sample collection with the 3G-ESP, negative filtration blanks
of 500 mL PCR grade water (Sigma-Aldrich) were collected
on the instrumentation to assess background contamination
(n = 8). DNA extraction blanks were performed alongside every
18 extractions (n = 6). No-template amplification controls were
also run in triplicate on each qPCR plate.

Statistical Methods
Non-parametric statistical methods were used to compare
direct and indirect sample collection comparisons. Specifically,

TABLE 1 | qPCR chemistries, condition and standard curve parameters.

Target
organism

Primer/
probe ID

Sequences (5′–3′) Ann Temp
(◦C)∗

Conc
(µM)†

Slope (eff. %)§ Int¶ LOQ
(cp/rxn)‡

LOD
(cp/rxn)#

Thresh∗∗ Ref††

SAR11-433F CTCTTTCGTCGGGGAAGAAA 0.5

SAR11 (16S) S11V.2-588R CCACCTACGWACTCTTTAAGC 59 0.15 −3.34 (99.1) 35.4 10 5 0.002 Suzuki
et al., 2001

Univ519bRTM-P TTACCGCGGCTGCTGGCAC 0.2

Pseudo-
nitzschia

PnGenusF CTGTGTAGTGCTTCTTAGAGG 58 0.1 −3.49 (93.2) 34.3 10 5 0.5 Fitzpatrick
et al., 2010

spp. (18S) PnGenusR AGGTAGAACTCGTTGAATGC 0.1

Epac370F GGTTGAACAGTGTATCCCCCT 0.4

E. pacifica Epac423R AGAAGTGGCTCCAGCAATATGT 60 0.4 −3.58 (90.1) 35.9 10 5 0.002 This study

(CO1) Epac394P TCTGCAGGAATTGCACATGCTGGGGCT 0.2

Anchovy Eng_109F TTCACTTGGCATTTGACGGG 0.2

(dLoop) Eng_241R TGCTCCTGAGATCACTTATGC 60 0.2 −3.57 (90.5) 36.4 10 5 0.01 Sassoubre
et al., 2016

Eng_152F AGGTTGAACATTTTCCTTGCTTGCGA 0.15

∗Assay annealing temperature (Ann Temp) [◦C]; †Primer/probe concentration (Conc) [µM]; § Amplication efficiency (Eff.) [%] = 10−1/slope; ¶ Y-intercept (Int); ‡Assay limit
of quantification (LOQ) [cp/rxn = copies/reaction]; #Assay limit of detection (LOD) [cp/rxn = copies/reaction]; ∗∗Assay fluorescence threshold (Thresh) on StepOnePlus
qPCR instrument for defining cycle thresholds (CTs); ††Reference (Ref.).
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Kruskal–Wallis (KW) and Wilcoxon Signed Rank Test (W)
were used to compare overall means and paired sample means
between the ESP and traditional methods, within and across the
assayed taxa. Spearman’s Rank Correlation (S) was used to infer
relationships between the ESP methods and traditional methods.
All statistical analyses were performed in R (R Core Team, 2017).

RESULTS

Negative Controls and qPCR Assays
All pre-deployment ESP filtration and traditional filtration
samples, as well as extraction blanks were negative for
the intended qPCR targets. Post-deployment ESP filtration
blanks showed amplification of SAR11 at a concentration of
3421 copies/mL; all other targets were negative in ESP-post
deployment controls. No amplification was observed in any of
the qPCR no template controls. Essential qPCR information is
presented in Table 1. The qPCR assay developed for krill is
specific and sensitive based on in silico and cross-reaction testing
(see Supplementary Materials).

Direct Comparisons
Automated sample filtration and preservation of eDNA using
the ESP provided similar eDNA concentrations to traditional
peristaltic filtration followed by flash freezing preservation
(Figure 3, top panel). For direct comparisons, where the ESP and
the traditional sample handling methods drew from the same
source water (n = 15), eDNA concentrations were equivalent
between the two methods for paired anchovy (W = 28, pw = 0.69),
krill (W = 16, pw = 0.47), and SAR11 (W = 37 pw = 0.91)
samples. Only Pseudo-nitzschia concentrations were different
between methods (W = 66, pw = 0.03). Across all taxa analyzed
(n = 4), eDNA concentrations were similar between methods
(HKW = 0.001, pKW = 0.98). Using all taxa, eDNA concentrations
recovered using ESP methods showed a positive correlation
to the traditional method (Figure 4, S = 1690, ρS = 0.95,
pS < 0.001). For individual taxa, ESP methods were correlated
to the traditional method (ρS ≥ 0.71, pS < 0.008), except for krill
(ρS = 0.57, pS = 0.08).

Indirect Comparisons
Due to a limited number of samples (n = 4), sufficient statistical
power was not available to infer significant differences between
traditional and LRAUV-ESP comparisons. Nonetheless, we
report the results of the indirect comparisons for completeness.
eDNA concentrations of the taxa recovered using the LRAUV-
ESP during field operations compared to those recovered using
ship-based CTD Niskin sample collections that employed a
benchtop-ESP and traditional methods are shown in Figure 3
(bottom panel). eDNA concentrations recovered for anchovy
(HKW = 0.19, pKW = 0.91), Pseudo-nitzschia (HKW = 1.85,
pKW = 0.39), krill (HKW = 0.12, pKW = 0.95), and SAR11
(HKW = 1.07, pKW = 0.58) were similar using the three different
sample collection and processing methods (n = 4). When samples
and taxa were aggregated, eDNA concentration were similar
between methods (HKW = 0.62, pKW = 0.43). Quantifications

of in situ LRAUV-ESP eDNA concentrations were lower than
their corresponding CTDn counterparts that used the traditional
peristaltic filtration method. When comparing in situ LRAUV-
ESP with the traditional sampling method, eDNA abundances of
individual taxa were negatively correlated (−0.80 < ρS < −0.26),
but the relationship was not significant (0.08 < pS < 0.75).
Anchovy showed the strongest negative association between
LRAUV-ESP and the traditional sampling method (S = 15.44,
ρS = −0.54, pS = 0.08). Across all taxa, there was a positive
correlation between the LRAUV-ESP collected and processed
samples and the ship-based CTD Niskin samples (S = 413,
ρS = 0.69, pS < 0.001) (Figure 4).

Environmental Sample Processor eDNA
Stability
Replicate eDNA samples were collected and preserved using
the ESP and then stored up to 21 days (Figure 5). At T0,
the eDNA concentrations for each taxa were comparable when
comparing the traditional and ESP methods (Anchovy: W = 47,
pw = 0.085; krill: W = 77, pw = 0.85; pseudo-nitzchia: W = 101,
pw = 0.32; and SAR11: W = 60, pw = 0.30). No differences were
observed in eDNA concentrations for ESP samples recovered
at day 7 and day 21, relative to samples recovered at T0
(Kruskal–Wallis: anchovy: H = 3.68, pKW = 0.30; krill: H = 0.52,
pKW = 0.92; pseudo-nitzchia: H = 3.96, pKW = 0.27; and SAR11:
H = 4.52, pKW = 0.21).

In situ LRAUV-ESP Deployment
The LRAUV-ESP was deployed outside Monterey Bay to
autonomously locate and sample a chlorophyll maximum layer.
The vehicle ran tight circles within the chlorophyll maximum
layer and collected 11 samples over 12 h of continuous
submergence while drifting a total of 4.5 km (Figure 6).
The LRAUV-ESP acquired eDNA samples within this feature
and provided physical/chemical sensor contextual data. To
remain in the peak chlorophyll layer, the LRAUV re-acquired
the chlorophyll maximum on three occasions using a vertical
profiling perturbation behavior (Figure 6A; Zhang et al., 2015).
The water column was vertically mixed, a typical winter
condition, presenting weak vertical stratification and largely
horizontal gradients. The ESP sample collection volumes ranged
from 629 to 954 mL (mean = 725 mL ± 49 mL). The
corresponding sampling times ranged from 40 to 58 min
(mean = 45 min ± 2 min). Concentrations of eDNA were
variable over time, but were not significantly associated with
time or other contextual measurements. Anchovy and krill
were present in low concentrations, from below the limit of
quantification (BLOQ) to 4.5 and 8.9 copies/mL, respectively.
Pseudo-nitzchia was present in 4 of the 11 samples with
variable concentrations over time, ranging from BLOQ to
3 × 104 copies/mL. SAR11 concentrations were stable over
the deployment, ranging from 4 × 105 to 2 × 106 copies/mL.
SAR11 DNA carry over (3421 copies/mL) was present in
the post-deployment LRAUV-ESP negative controls. No other
target eDNA was detected in the pre- or post-deployment
negative controls.
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FIGURE 3 | eDNA recovery comparisons between ESP (dark gray bars) and traditional peristaltic (white bar) methods. Direct comparisons (top panel) between
benchtop-ESP and traditional peristaltic methods where samples were collected from the same sample bottle. Collection method comparisons (bottom panel)
between in situ collected and preserved LRAUV-ESP (ESP onboard LRAUV) samples (light gray) collected in close proximity to ship-based method utilizing a CTD
Rosette with Niskin bottles. Niskin bottle samples were processed using both a benchtop-ESP (dark gray) and the traditional peristaltic method (white). Error bars
represent 95% confidence intervals.

DISCUSSION

The ESP can successfully filter and preserve water samples for
downstream eDNA analyses, extending the archival/preservation
capabilities of the ESP, which has previously been used for RNA
and DNA investigations of aquatic microbes (Ottesen et al.,
2011, 2014; Herfort et al., 2016). Despite previous failures of
eDNA preservation with RNAlater R© (Renshaw et al., 2015; Spens
et al., 2017), this study provides evidence that RNAlater R© can
be successfully used to preserve eDNA sample filters for up to
21 days. Combined, these results provide validation of the ESP for
eDNA collection and its potential application in the management
of rare or low density species for conservation (Baker et al.,
2018; Lafferty et al., 2018) and biodiversity observatory purposes
(Goodwin et al., 2017; Muller-Karger et al., 2018). Overall, the

ESP offers advantages and limitations that must be considered
given the specific eDNA study and the resource management
issue in question.

Method Comparison Limitations
The similarity of eDNA concentrations between direct
comparison samples demonstrates that the ESP-derived
observations are comparable to what is achieved with well-
established manual methods. Similar to previous eDNA filtration
and preservation comparison studies, statistical inferences
were drawn from a limited number of samples (Eichmiller
et al., 2016; Djurhuus et al., 2017; Hinlo et al., 2017). Given
the low sample number and inherent variability associated
with eDNA in environmental samples (Barnes et al., 2014;
Sassoubre et al., 2016; Andruszkiewicz et al., 2017), it would
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FIGURE 4 | Log-log correlation of eDNA recovery collected via the traditional laboratory method (x-axis) and using the benchtop-ESP and the LRAUV-ESP methods
(y-axis). Filled symbols are the direct comparisons (same water, benchtop-ESP vs. traditional method) and open symbols are the indirect collection method
comparisons (LRAUV-ESP vs. ship-based collection with the traditional peristaltic method). Error bars represent 95% confidence intervals.

FIGURE 5 | eDNA preservation time series using the LRAUV-ESP. Concentrations of eDNA using peristaltic filtration (dark gray bars) and the ESP (light gray bars) at
day 0, day 7, and day 21 of preservation on the ESP. Error bars represent 95% confidence intervals.

be preferable to include additional samples for increased
statistical robustness in order to establish equivalency between
the methods (Borman et al., 2009). However, we utilized

four different assays targeting a range of taxa and eDNA
concentrations, and all demonstrated concurrence between the
ESP and traditional manual methods.

Frontiers in Marine Science | www.frontiersin.org 9 July 2019 | Volume 6 | Article 373

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-06-00373 July 13, 2019 Time: 15:28 # 10

Yamahara et al. Autonomous eDNA Sample Collections

FIGURE 6 | The LRAUV-ESP collected and preserved 11 samples in situ over a 12-h time period in January 2018 (dashed lines) while deployed outside Monterey
Bay, CA. LRAUV contextual sensor data includes chlorophyll (A), temperature (B), and salinity (C) along with corresponding taxa eDNA concentrations (D). Error
bars represent 95% confidence intervals.

For the indirect comparisons, the limited number of samples
(n = 4) do not allow for making significant statistical inferences
from the data. The results reported here suggest that LRAUV-
ESP collected samples provide eDNA concentrations comparable
to traditional ship-based CTD sample collections. In contrast,
small scale patchiness of eDNA have been previously observed
in vertebrate metabarcoding studies within Monterey Bay
(Andruszkiewicz et al., 2017). In the future, as ESP technology
is applied to eDNA studies; larger sample sizes, additional
analyses (e.g., metabarcoding) and additional field deployments

will establish a more robust equivalency of the ESP to traditional
samples methods.

We examined eDNA concentrations by qPCR in order to
quantitatively assess the performance of each sampling and
processing method. A more exhaustive approach would have
utilized both metabarcoding and qPCR analyses for our methods
comparison (Lacoursière-Roussel et al., 2016; Harper et al., 2018).
The metabarcoding sequencing approach could provide a passive
monitoring approach for biodiversity assessments with the ability
to detect rare marine organisms (Lacoursière-Roussel et al., 2016;
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Blackman et al., 2017), but was beyond the scope of this study.
The qPCR results provide quantification of target organisms
across multiple trophic levels and over a range of eDNA
concentrations. Importantly, we show that the ESP captures
DNA from abundant microbes (SAR11), harmful algae (Pseudo-
nitzchia), key prey species (krill), and forage fish (anchovies).

RNAlater R© Preservation of eDNA
RNAlater R© is an effective preservative for use with the ESP,
resulting in recoverable eDNA from a range of taxa, as well as
potential sample storage times indicative of a typical LRAUV
deployment (up to 21 days). These results are similar to
previous studies that utilized 2G ESP-based approaches for
metatranscriptomic (Ottesen et al., 2011) and proteomic studies
(Saito et al., 2011) for marine microorganisms. While RNAlater R©

was developed for the stabilization of cellular RNA, other
studies have shown its effectiveness as a preservative for DNA
(Gorokhova, 2005). In contrast, Renshaw et al. (2015) and
Spens et al. (2017), reported inhibition of downstream PCR
amplification from RNAlater R©-preserved eDNA samples. This
may be explained by different combinations of preservation
and extraction methodologies, as Simister et al., has shown
that DNA yield is impacted by the choice of preservation
and extraction method (Simister et al., 2011). For example,
the ESP preservation protocol purges RNAlater R© from filters
after the incubation, rendering a moist filter with very little
RNAlater R© carryover. This protocol may positively impact
subsequent DNA extractions and PCR amplifications. Additional
research should confirm these findings and compare these
results to traditional eDNA preservatives combined with different
extraction methods. Moreover, researchers need to account for
the chemical compatibility of preservatives and nucleic acid
extraction methods when utilizing them for environmental
samples, such as eDNA filters. These results suggest that the use of
RNAlater R© may be a more versatile preservative than traditional
eDNA preservative methods, such as ethanol or Longmire’s
solution (Renshaw et al., 2015; Minamoto et al., 2016; Williams
et al., 2016). A preservative allowing for DNA, RNA and proteins
to be co-extracted from a single sample may pave the way for
future research coupling eDNA and eRNA in gene expression
studies and community level processes (Laroche et al., 2017;
Pochon et al., 2017).

Negative Controls for Automated
Systems
A primary concern with automated sampling systems is carry-
over contamination between independent samples. In this study,
instrument pre-deployment (prior to environmental sampling)
and post-deployment (after recovering the instrument) negative
controls were utilized to assess instrument sterility. SAR11 DNA
was observed in the post-deployment negative controls on the
3G ESP and is likely a result of carry over contamination
from inadequate cleaning of the sampling fluidic paths
(Figure 2, intake through toroid valve and out of the exhaust).
SAR11 is the most abundant bacterioplankton in the world’s
oceans (Giovannoni, 2017) and relative to the concentrations

observed during the LRAUV-ESP deployment (mean 9.7 × 105

copies/mL), only a small percentage (0.34%) of SAR11 DNA
was found in the post-deployment negative controls. Regardless,
this result suggests the need to improve decontamination
protocols between samples within the ESP instrumentation
to prevent sample carry-over and biofouling, particularly for
extended deployments and metabarcoding applications. This
is of particular concern to reduce the risk of potential
false positives in eDNA studies. Future studies incorporating
robotic sampling devices for eDNA should also consider
the appropriate controls for assessing contamination during
instrument operations.

Autonomous Mobile Sampling Systems
for eDNA
Coupling the use of eDNA analyses to advances in marine
robotics will usher in a new era for studying ecosystem processes
and perhaps provide new ways of collecting biological data that
is akin to the physical and chemical sensor data already being
collected in the ocean. For example, utilization of drones for
eDNA sample collection has been previously reported using
an unmanned aerial vehicle (UAV) in a freshwater reservoir
(Doi et al., 2017). Hoffmann et al. (2016) provides a concept
of utilizing a hydroplane drone for improved sample collection
with less effort. In this study we take the next step in enhancing
eDNA sample collections and biological observations by utilizing
the ESP to collect and preserve multiple samples remotely
on a mobile platform (LRAUV). These sample collections
are coupled with oceanographic feature finding algorithms
that allow the vehicle to search for and target specific water
masses for complete autonomous sampling. During the 12-h
sample collection series, we demonstrated fine-scale temporal
(∼1 h) resolution and the ability to couple physio-chemical
measurements to eDNA densities. The integration of these types
of data offer an opportunity to conduct novel observations that
are either difficult or impractical to accomplish using traditional
ship-based sampling.

Ship- and shore-based manual sampling methods constrain
most field sampling to weekly visitations at best (Bista et al.,
2017; Sigsgaard et al., 2017; Stoeckle et al., 2017, 2018). To our
knowledge, only a few studies have reported hourly or high-
frequency sampling over short durations to investigate the effects
tides (Kelly et al., 2018) or spawning events (Tillotson et al., 2018)
have on eDNA signals. High-frequency sampling, as provided
by the ESP, will be needed to investigate fine scale temporal
variations associated with such phenomena as diel cycles, vertical
migrations of marine organisms, or the persistence of eDNA
signatures with respect to both space and time. Moreover, mobile
autonomous sampling provides the ability to make biological
observations around a bounded region (e.g., marine preserves)
and establish links between organisms and local ecosystem
processes. Autonomous sampling instrumentation may also
provide value to freshwater studies of eDNA, where sample
collection and preservation is often conducted at remote field
sites (Goldberg et al., 2015). This study demonstrates that the 3G
ESP could be useful to meet that need.
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CONCLUSION

To our knowledge, this is the first report of successfully
collecting and preserving eDNA using an in situ autonomous
mobile instrument, the LRAUV-ESP. Furthermore, the emergent
adaptive sampling capabilities of the LRAUV can be used to guide
autonomous eDNA sample collection remotely absent a human
presence. Advances in the shore-side eDNA analytical methods
should also be met by investments in sample processing and
collection methods with the goal of meeting the needs of the
resource and conservation management community. To that end,
we are working to improve upon existing instrumentation by
incorporating new decontamination protocols between sample
collection events, integrating in situ detection technologies
(Preston et al., 2011; Ussler et al., 2013; Yamahara et al., 2015),
and exploring terrestrial-based deployment scenarios (Yamahara
et al., 2015; Herfort et al., 2016). In the future, we foresee
fleets of remotely operated, mobile autonomous samplers and
ecogenomic sensors, like the 3G ESP, that will allow investigators
to observe complex biological processes at fine-scale temporal
and spatial resolutions that are not possible to accomplish today.
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